常用的數(shù)量關系式
1、每份數(shù)×份數(shù)=總數(shù) 總數(shù)÷每份數(shù)=份數(shù) 總數(shù)÷份數(shù)=每份數(shù)
2、1倍數(shù)×倍數(shù)=幾倍數(shù) 幾倍數(shù)÷1倍數(shù)=倍數(shù) 幾倍數(shù)÷倍數(shù)=1倍數(shù)
3、速度×時間=路程 路程÷速度=時間 路程÷時間=速度
4、單價×數(shù)量=總價 總價÷單價=數(shù)量 總價÷數(shù)量=單價
5、 工作效率×工作時間=工作總量 工作總量÷工作效率=工作時間 工作總量÷工作時間=工作效率
6、加數(shù)+加數(shù)=和 和-一個加數(shù)=另一個加數(shù)
7、被減數(shù)-減數(shù)=差 被減數(shù)-差=減數(shù) 差+減數(shù)=被減數(shù)
8、因數(shù)×因數(shù)=積 積÷一個因數(shù)=另一個因數(shù)
9、被除數(shù)÷除數(shù)=商 被除數(shù)÷商=除數(shù) 商×除數(shù)=被除數(shù)
小學數(shù)學圖形公式
1、正方形(C:周長S:面積a:邊長)
周長=邊長×4 C=4a
面積=邊長×邊長 S=a×a
2、長方形(C:周長S:面積a:邊長)
周長=(長+寬)×2 C=2(a+b)
面積=長×寬 S=ab
3、三角形(s:面積a:底h:高)
面積=底×高÷2 s=ah÷2
三角形高=面積×2÷底 三角形底=面積×2÷高
4、總數(shù)÷總份數(shù)=平均數(shù)
5、和差問題的公式
(和+差)÷2=大數(shù) (和-差)÷2=小數(shù)
6、和倍問題
和÷(倍數(shù)-1)=小數(shù) 小數(shù)×倍數(shù)=大數(shù)(或者和-小數(shù)=大數(shù))
7、差倍問題
差÷(倍數(shù)-1)=小數(shù) 小數(shù)×倍數(shù)=大數(shù)(或小數(shù)+差=大數(shù))
8、相遇問題
相遇路程=速度和×相遇時間
相遇時間=相遇路程÷速度和
速度和=相遇路程÷相遇時間
常用單位換算
長度單位換算
1千米=1000米1米=10分米1分米=10厘米1米=100厘米1厘米=10毫米
面積單位換算
1平方千米=100公頃1公頃=10000平方米1平方米=100平方分米
1平方分米=100平方厘米1平方厘米=100平方毫米
重量單位換算
1噸=1000千克1千克=1000克1千克=1公斤
人民幣單位換算
1元=10角1角=10分1元=100分
時間單位換算
1世紀=100年1年=12月大月(31天)有:1\3\5\7\8\10\12月小月(30天)的有:4\6\9\11月
平年2月28天,閏年2月29天平年全年365天,閏年全年366天1日=24小時
1時=60分1分=60秒1時=3600秒
基本概念
先進章數(shù)和數(shù)的運算
一概念
(一)整數(shù)
1、整數(shù)的意義
自然數(shù)和0都是整數(shù)。
2、自然數(shù)
我們在數(shù)物體的時候,用來表示物體個數(shù)的1,2,3……叫做自然數(shù)。
一個物體也沒有,用0表示。0也是自然數(shù)。
3、計數(shù)單位
一(個)、十、百、千、萬、十萬、百萬、千萬、億……都是計數(shù)單位。
每相鄰兩個計數(shù)單位之間的進率都是10。這樣的計數(shù)法叫做十進制計數(shù)法。
4、數(shù)位
計數(shù)單位按照一定的順序排列起來,它們所占的位置叫做數(shù)位。
5、數(shù)的整除
整數(shù)a除以整數(shù)b(b≠0),除得的商是整數(shù)而沒有余數(shù),我們就說a能被b整除,或者說b能整除a。
如果數(shù)a能被數(shù)b(b≠0)整除,a就叫做b的倍數(shù),b就叫做a的約數(shù)(或a的因數(shù))。倍數(shù)和約數(shù)是相互依存的。
因為35能被7整除,所以35是7的倍數(shù),7是35的約數(shù)。
一個數(shù)的約數(shù)的個數(shù)是有限的,其中較小的約數(shù)是1,較大的約數(shù)是它本身。例如:10的約數(shù)有1、2、5、10,其中較小的約數(shù)是1,較大的約數(shù)是10。
一個數(shù)的倍數(shù)的個數(shù)是無限的,其中較小的倍數(shù)是它本身。3的倍數(shù)有:3、6、9、12……其中較小的倍數(shù)是3,沒有較大的倍數(shù)。
個位上是0、2、4、6、8的數(shù),都能被2整除,例如:202、480、304,都能被2整除。。
個位上是0或5的數(shù),都能被5整除,例如:5、30、405都能被5整除。。
一個數(shù)的各位上的數(shù)的和能被3整除,這個數(shù)就能被3整除,例如:12、108、204都能被3整除。
一個數(shù)各位數(shù)上的和能被9整除,這個數(shù)就能被9整除。
能被3整除的數(shù)不一定能被9整除,但是能被9整除的數(shù)一定能被3整除。
一個數(shù)的末兩位數(shù)能被4(或25)整除,這個數(shù)就能被4(或25)整除。例如:16、404、1256都能被4整除,50、325、500、1675都能被25整除。
一個數(shù)的末三位數(shù)能被8(或125)整除,這個數(shù)就能被8(或125)整除。例如:1168、4600、5000、12344都能被8整除,1125、13375、5000都能被125整除。
能被2整除的數(shù)叫做偶數(shù)。
不能被2整除的數(shù)叫做奇數(shù)。
0也是偶數(shù)。自然數(shù)按能否被2整除的特征可分為奇數(shù)和偶數(shù)。
幾個數(shù)公有的約數(shù),叫做這幾個數(shù)的公約數(shù)。其中較大的一個,叫做這幾個數(shù)的較大公約數(shù),例如12的約數(shù)有1、2、3、4、6、12;18的約數(shù)有1、2、3、6、9、18。其中,1、2、3、6是12和18的公約數(shù),6是它們的較大公約數(shù)。
如果較小數(shù)是較大數(shù)的約數(shù),那么較小數(shù)就是這兩個數(shù)的較大公約數(shù)。
幾個數(shù)公有的倍數(shù),叫做這幾個數(shù)的公倍數(shù),其中較小的一個,叫做這幾個數(shù)的較小公倍數(shù),如2的倍數(shù)有2、4、6、8、10、12、14、16、18……
3的倍數(shù)有3、6、9、12、15、18……其中6、12、18……是2、3的公倍數(shù),6是它們的較小公倍數(shù)。
如果較大數(shù)是較小數(shù)的倍數(shù),那么較大數(shù)就是這兩個數(shù)的較小公倍數(shù)。
幾個數(shù)的公約數(shù)的個數(shù)是有限的,而幾個數(shù)的公倍數(shù)的個數(shù)是無限的。
二方法
(一)數(shù)的讀法和寫法
1.整數(shù)的讀法:從高位到低位,一級一級地讀。讀億級、萬級時,先按照個級的讀法去讀,再在后面加一個“億”或“萬”字。每一級末尾的0都不讀出來,其它數(shù)位連續(xù)有幾個0都只讀一個零。
2.整數(shù)的寫法:從高位到低位,一級一級地寫,哪一個數(shù)位上一個單位也沒有,就在那個數(shù)位上寫0。
(二)數(shù)的改寫
一個較大的多位數(shù),為了讀寫方便,常常把它改寫成用“萬”或“億”作單位的數(shù)。有時還可以根據(jù)需要,省略這個數(shù)某一位后面的數(shù),寫成近似數(shù)。
1.準確數(shù):在實際生活中,為了計數(shù)的簡便,可以把一個較大的數(shù)改寫成以萬或億為單位的數(shù)。改寫后的數(shù)是原數(shù)的準確數(shù)。例如把1254300000改寫成以萬做單位的數(shù)是125430萬;改寫成以億做單位的數(shù)12.543億。
2.近似數(shù):根據(jù)實際需要,我們還可以把一個較大的數(shù),省略某一位后面的尾數(shù),用一個近似數(shù)來表示。例如:1302490015省略億后面的尾數(shù)是13億。
3.四舍五入法:要省略的尾數(shù)的較高位上的數(shù)是4或者比4小,就把尾數(shù)去掉;如果尾數(shù)的較高位上的數(shù)是5或者比5大,就把尾數(shù)舍去,并向它的前一位進1。例如:省略345900萬后面的尾數(shù)約是35萬。省略4725097420億后面的尾數(shù)約是47億。
4.大小比較
比較整數(shù)大小:比較整數(shù)的大小,位數(shù)多的那個數(shù)就大,如果位數(shù)相同,就看較高位,較高位上的數(shù)大,那個數(shù)就大;較高位上的數(shù)相同,就看下一位,哪一位上的數(shù)大那個數(shù)就大。
三性質和規(guī)律
(一)商不變的規(guī)律
商不變的規(guī)律:在除法里,被除數(shù)和除數(shù)同時擴大或者同時縮小相同的倍,商不變。
(五)分數(shù)與除法的關系
1.被除數(shù)÷除數(shù)=被除數(shù)/除數(shù)
2.因為零不能作除數(shù),所以分數(shù)的分母不能為零。
3.被除數(shù)相當于分子,除數(shù)相當于分母。