預約高中1對1精品課程(面授/在線),滿足學員個性化學習需求 馬上報名↓
一 線和角
(1)線
* 直線 直線沒有端點;長度無限;過一點可以畫無數(shù)條,過兩點只能畫一條直線。
* 射線 射線只有一個端點;長度無限。
* 線段 線段有兩個端點,它是直線的一部分;長度有限;兩點的連線中,線段為較短。
* 平行線 在同一平面內(nèi),不相交的兩條直線叫做平行線。
兩條平行線之間的垂線長度都相等。
* 垂線 兩條直線相交成直角時,這兩條直線叫做互相垂直,其中一條直線叫做另一條直線的垂線,相交的點叫做垂足。
從直線外一點到這條直線所畫的垂線的長叫做這點到直線的距離。
(2)角 (1)從一點引出兩條射線,所組成的圖形叫做角。這個點叫做角的頂點,這兩條射線叫做角的邊。
(2)角的分類
銳角:小于90°的角叫做銳角。
直角:等于90°的角叫做直角。
鈍角:大于90°而小于180°的角叫做鈍角。
平角:角的兩邊成一條直線,這時所組成的角叫做平角。平角180°。
周角:角的一邊旋轉(zhuǎn)一周,與另一邊重合。周角是360°。
二 平面圖形
1長方形
(1)特征 對邊相等,4個角都是直角的四邊形。有兩條對稱軸。
(2)公式 c=2(a+b) s=ab
2正方形
(1)特征:四條邊都相等,四個角都是直角的四邊形。有4條對稱軸。
(2)公式:c=4a ;s=a2
3三角形
(1)特征:由三條線段圍成的圖形。內(nèi)角和是180度。三角形具有穩(wěn)定性。三角形有三條高。
(2)公式:s=ah/2
(3)分類
*按角分:
銳角三角形 :三個角都是銳角。
直角三角形 :有一個角是直角。等腰三角形的兩個銳角各為45度,它有一條對稱軸。
鈍角三角形:有一個角是鈍角。
*按邊分:
不等邊三角形:三條邊長度不相等。
等腰三角形:有兩條邊長度相等;兩個底角相等;有一條對稱軸。
等邊三角形:三條邊長度都相等;三個內(nèi)角都是60度;有三條對稱軸。
4平行四邊形
(1)特征:兩組對邊分別平行的四邊形。 相對的邊平行且相等。對角相等,相鄰的兩個角的度數(shù)之和為180度。平行四邊形容易變形。
(2)公式 s=ah
5 梯形
(1)特征:只有一組對邊平行的四邊形。 中位線等于上下底和的一半。 等腰梯形有一條對稱軸。
(2)公式 s=(a+b)h/2=mh
6 圓
(1)圓的認識 平面上的一種曲線圖形。
圓中心的一點叫做圓心。一般用字母o表示。
半徑:連接圓心和圓上任意一點的線段叫做半徑。一般用r表示。
在同一個圓里,有無數(shù)條半徑,每條半徑的長度都相等。
通過圓心并且兩端都在圓上的線段叫做直徑。一般用d表示。
同一個圓里有無數(shù)條直徑,所有的直徑都相等。
同一個圓里,直徑等于兩個半徑的長度,即d=2r。
圓的大小由半徑?jīng)Q定。 圓有無數(shù)條對稱軸。
(2)圓的畫法
把圓規(guī)的兩腳分開,定好兩腳間的距離(即半徑);
把有針尖的一只腳固定在一點(即圓心)上;
把裝有鉛筆尖的一只腳旋轉(zhuǎn)一周,就畫出一個圓。
(3) 圓的周長
圍成圓的曲線的長叫做圓的周長。
把圓的周長和直徑的比值叫做圓周率。用字母∏表示。
(4) 圓的面積
圓所占平面的大小叫做圓的面積。
(5)公式 d=2r r=d/2 c=∏d c=2∏r s=∏r2
7扇形
(1) 扇形的認識
一條弧和經(jīng)過這條弧兩端的兩條半徑所圍成的圖形叫做扇形。
圓上AB兩點之間的部分叫做弧,讀作“弧AB”。
頂點在圓心的角叫做圓心角。
在同一個圓中,扇形的大小與這個扇形的圓心角的大小有關。
扇形有一條對稱軸。
(2) 公式 s=n∏r2/360
8環(huán)形
(1) 特征 由兩個半徑不相等的同心圓相減而成,有無數(shù)條對稱軸。
(2) 公式 s=∏(R2-r2)
9軸對稱圖形
(1) 特征
如果一個圖形沿著一條直線對折,兩側(cè)的圖形能夠完全重合,這個圖形就是軸對稱圖形。折痕所在的這條直線叫做對稱軸。
正方形有4條對稱軸, 長方形有2條對稱軸。
等腰三角形有2條對稱軸,等邊三角形有3條對稱軸。
等腰梯形有一條對稱軸,圓有無數(shù)條對稱軸。
菱形有4條對稱軸,扇形有一條對稱軸。
三 立體圖形
(一)長方體
1 特征 六個面都是長方形(有時有兩個相對的面是正方形)。 相對的面面積相等,12條棱相對的4條棱長度相等。 有8個頂點。 相交于一個頂點的三條棱的長度分別叫做長、寬、高。 兩個面相交的邊叫做棱。 三條棱相交的點叫做頂點。
把長方體放在桌面上,較多只能看到三個面。
長方體或者正方體6個面的總面積,叫做它的表面積。
2 公式 s=2(ab+ah+bh) V=sh V=abh
(二)正方體
1 特征 六個面都是正方形 六個面的面積相等 12條棱,棱長都相等 有8個頂點
正方體可以看作特殊的長方體
2 公式 S表=6a2 v=a3
(三)圓柱
1圓柱的認識 圓柱的上下兩個面叫做底面。 圓柱有一個曲面叫做側(cè)面。 圓柱兩個底面之間的距離叫做高 。
進一法:實際中,使用的材料都要比的結(jié)果多一些 ,因此,要保留數(shù)的時候,省略的位上的是4或者比4小,都要向前一位進1。這種取近似值的方法叫做進一法。
2公式 s側(cè)=ch s表=s側(cè)+s底×2 v=sh/3
(四)圓錐
1 圓錐的認識
圓錐的底面是個圓,圓錐的側(cè)面是個曲面。
從圓錐的頂點到底面圓心的距離是圓錐的高。
測量圓錐的高:先把圓錐的底面放平,用一塊平板水平地放在圓錐的頂點上面,豎直地量出平板和底面之間的距離。
把圓錐的側(cè)面展開得到一個扇形。 2公式 v= sh/3
(五)球
1 認識 球的表面是一個曲面,這個曲面叫做球面。
球和圓類似,也有一個球心,用O表示。
從球心到球面上任意一點的線段叫做球的半徑,用r表示,每條半徑都相等。
通過球心并且兩端都在球面上的線段,叫做球的直徑,用d表示,每條直徑都相等,直徑的長度等于半徑的2倍,即d=2r。
2 公式 d=2r
智康教育:優(yōu)秀的N對一個性化輔導、口碑好的家教品牌,提供小學數(shù)學、英語、語文、物理、化學等全科家教輔導,滿足小學、小學、初中、中考、高中、高考等各類人群課外補習需求。