掃描注冊(cè)有禮
讓進(jìn)步看得見(jiàn)
熱門(mén)課程先知道
預(yù)約高中1對(duì)1精品課程(面授/在線),滿足學(xué)員個(gè)性化學(xué)習(xí)需求 馬上報(bào)名↓
相似三角形是初中數(shù)學(xué)中的一個(gè)非常重要的知識(shí)點(diǎn),它也是歷年中考的熱點(diǎn)內(nèi)容,通?疾橐韵氯齻(gè)部分:一是考查相似三角形的判定;二是考查利用相似三角形的性質(zhì)解題;三是考查與相似三角形有關(guān)的綜合內(nèi)容。以上試題的考查既能體現(xiàn)開(kāi)放探究性,又能注重知識(shí)之間的綜合性。首先我們幫助孩子突破相似三角形判定這個(gè)難點(diǎn),下面以兩道例題來(lái)說(shuō)明解答策略及規(guī)律。
例1.(1)在平行四邊形ABCD中,G是DC延長(zhǎng)線上一點(diǎn),AG分別交BD和BC于點(diǎn)E、F,則圖中相似三角形共有_____對(duì)。
解答對(duì)策:<1>由平行四邊形對(duì)邊平行的性質(zhì)得到相似三角形的基本圖形(平行八字、平行A字)清楚地展現(xiàn)出來(lái),此處是孩子掌握比較好的地方;再將相似的特殊情形如全等、相似的傳遞性加以強(qiáng)調(diào),這部分內(nèi)容是孩子知識(shí)的漏洞之處,易混易錯(cuò)。通過(guò)問(wèn)題情境的鋪設(shè),層層鋪墊,同學(xué)們既容易全面理解,又可以抓住解題規(guī)律,起到了突出重點(diǎn)、突破難點(diǎn)的效果。
<2>教師在解答此處時(shí),利用幾何畫(huà)板輔助。通過(guò)將基本圖形從復(fù)雜圖形中分離出來(lái),用不同顏色區(qū)分,同一顏色歸類,層次清晰,效果明顯!
答案:6對(duì)
。2)將△ACE繞點(diǎn)C旋轉(zhuǎn)一定的角度后使點(diǎn)A落在點(diǎn)B處,點(diǎn)E落在點(diǎn)D處,且點(diǎn)B、C、E在同一直線上,直線AC、BD交于點(diǎn)F,CD、AE交于點(diǎn)G, AE、BD交于點(diǎn)H,連接AB、DE。則以下結(jié)論中:①∠DHE=∠ACB,②△ABH∽△GDH,③△DHG∽△ECG,④△ABC∽△DEC,⑤CF=CG,其中正確的是______
解答對(duì)策:教師孩子挖掘隱含條件,利用不同顏色將重要的圖形一一清楚地展現(xiàn)出來(lái),同學(xué)們可以抓住解題方法、規(guī)律。教師通過(guò)創(chuàng)設(shè)情境,層層鋪墊,有利于孩子的理解,有利于孩子的遷移和技能的形成,有利于完善孩子的知識(shí)結(jié)構(gòu),實(shí)現(xiàn)了突出重點(diǎn)、突破難點(diǎn)的意圖。
下面我們逐一分析每個(gè)結(jié)論:
結(jié)論①:由旋轉(zhuǎn)得,∠CEA=∠CDB=β,∠CBD=∠CAE=γ
∠1=∠CBD+∠CEA=γ+β,∠2=∠CAE+∠CEA=γ+β
所以得,∠1=∠2,即∠DHE=∠ACB
結(jié)論③:由∠CEA=∠CDB,∠DGH=∠EGC
所以得△DHG∽△ECG
。▋山菍(duì)應(yīng)相等的三角形相似)
結(jié)論④:由△DHG∽△ECG,得∠DHG=∠ECG
同理∠AHF=∠BCF,又∠DHG=∠AHF,
所以∠BCA=∠ECD
又AC=BC,DC=EC,所以△ABC∽△DEC
。▋蛇厡(duì)應(yīng)成比例且?jiàn)A角對(duì)應(yīng)相等的三角形相似)
結(jié)論②:若△ABH∽△GDH,則∠ABH=∠GDH=β
則∠BAC=∠CBA=γ+β,∠ACD=∠BAC=γ+β
在△ABH中,γ+β+γ+β+α=180o
點(diǎn)B、C、E共線,γ+β+α+α=180o
解方程,得α=60o,則△ABC是等邊三角形,與已知矛盾,則結(jié)論②不成立。
由已知條件推不出結(jié)論⑤,即CF=CG不一定成立。
答案:①③④
兩個(gè)三角形全等是兩個(gè)三角形相似的特例,此時(shí),相似比為1
智康教育:優(yōu)秀的N對(duì)一個(gè)性化輔導(dǎo)、口碑好的家教品牌,提供小學(xué)數(shù)學(xué)、英語(yǔ)、語(yǔ)文、物理、化學(xué)等全科家教輔導(dǎo),滿足小學(xué)、小學(xué)、初中、中考、高中、高考等各類人群課外補(bǔ)習(xí)需求。
大家都在看
限時(shí)免費(fèi)領(lǐng)取