資訊

上海

課程咨詢(xún): 10108899

在線咨詢(xún)

點(diǎn)擊開(kāi)始 在線咨詢(xún)

電話咨詢(xún)

請(qǐng)撥打咨詢(xún)電話 1010-8899
TOP
當(dāng)前位置:上海學(xué)而思1對(duì)1 > 初中輔導(dǎo) > 初一數(shù)學(xué) > 正文

[知識(shí)梳理]初中數(shù)學(xué)公式大全(2)

2014-08-15 13:48:05  來(lái)源:上海智康1對(duì)1

點(diǎn)擊即可領(lǐng)取2015-2021年上海中考二模試題及答案匯總

點(diǎn)擊領(lǐng)取

— — 學(xué)而思初中課程在線預(yù)約 — —

預(yù)約課程還可獲贈(zèng)免費(fèi)的學(xué)習(xí)復(fù)習(xí)診斷

免費(fèi)學(xué)習(xí)診斷 精品5人班 個(gè)性化團(tuán)課

    點(diǎn)擊預(yù)約→免費(fèi)的1對(duì)1學(xué)科診斷及課程規(guī)劃

  86 平行線分線段成比例定理 三條平行線截兩條直線,所得的對(duì)應(yīng)線段成比例

  87 推論 平行于三角形一邊的直線截其他兩邊(或兩邊的延長(zhǎng)線),所得的對(duì)應(yīng)線段成比例

  88 定理 如果一條直線截三角形的兩邊(或兩邊的延長(zhǎng)線)所得的對(duì)應(yīng)線段成比例,那么這條直線平行于三角形的第三邊

  89 平行于三角形的一邊,并且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對(duì)應(yīng)成比例

  90 定理 平行于三角形一邊的直線和其他兩邊(或兩邊的延長(zhǎng)線)相交,所構(gòu)成的三角形與原三角形相似

  91 相似三角形判定定理1 兩角對(duì)應(yīng)相等,兩三角形相似(ASA)

  92 直角三角形被斜邊上的成的兩個(gè)直角三角形和原三角形相似

  93 判定定理2 兩邊對(duì)應(yīng)成比例且?jiàn)A角相等,兩三角形相似(SAS)

  94 判定定理3 三邊對(duì)應(yīng)成比例,兩三角形相似(SSS)

  95 定理 如果一個(gè)直角三角形的斜邊和一條直角邊與另一個(gè)直角三角形的斜邊和一條直角邊對(duì)應(yīng)成比例,那么這兩個(gè)直角三角形相似

  96 性質(zhì)定理1 相似三角形對(duì)應(yīng)高的比,對(duì)應(yīng)中線的比與對(duì)應(yīng)角平分線的比都等于相似比

  97 性質(zhì)定理2 相似三角形周長(zhǎng)的比等于相似比

  98 性質(zhì)定理3 相似三角形面積的比等于相似比的平方

  99 任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等于它的余角的正弦值

  100任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值

  101圓是定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合

  102圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的集合

  103圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合

  104同圓或等圓的半徑相等

  105到定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(zhǎng)為半徑的圓

  106和已知線段兩個(gè)端點(diǎn)的距離相等的點(diǎn)的軌跡,是著條線段的垂直平分線

  107到已知角的兩邊距離相等的點(diǎn)的軌跡,是這個(gè)角的平分線

  108到兩條平行線距離相等的點(diǎn)的軌跡,是和這兩條平行線平行且距離相等的一條直線

  109定理 不在同一直線上的三點(diǎn)確定一個(gè)圓。

  110垂徑定理 垂直于弦的直徑平分這條弦并且平分弦所對(duì)的兩條弧

  111推論1 ①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條弧

  ②弦的垂直平分線經(jīng)過(guò)圓心,并且平分弦所對(duì)的兩條弧

 、燮椒窒宜鶎(duì)的一條弧的直徑,垂直平分弦,并且平分弦所對(duì)的另一條弧

  112推論2 圓的兩條平行弦所夾的弧相等

  113圓是以圓心為對(duì)稱(chēng)中心的中心對(duì)稱(chēng)圖形

  114定理 在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦相等,所對(duì)的弦的弦心距相等

  115推論 在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對(duì)應(yīng)的其余各組量都相等

  116定理 一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半

  117推論1 同弧或等弧所對(duì)的圓周角相等;同圓或等圓中,相等的圓周角所對(duì)的弧也相等

  118推論2 半圓(或直徑)所對(duì)的圓周角是直角;90°的圓周角所對(duì)的弦是直徑

  119推論3 如果三角形一邊上的中線等于這邊的一半,那么這個(gè)三角形是直角三角形

  120定理 圓的內(nèi)接四邊形的對(duì)角互補(bǔ),并且任何一個(gè)外角都等于它的內(nèi)對(duì)角

  121①直線L和⊙O相交 d<r

  ②直線L和⊙O相切 d=r

 、壑本L和⊙O相離 d>r

  122切線的判定定理 經(jīng)過(guò)半徑的外端并且垂直于這條半徑的直線是圓的切線

  123切線的性質(zhì)定理 圓的切線垂直于經(jīng)過(guò)切點(diǎn)的半徑

  124推論1 經(jīng)過(guò)圓心且垂直于切線的直線必經(jīng)過(guò)切點(diǎn)

  125推論2 經(jīng)過(guò)切點(diǎn)且垂直于切線的直線必經(jīng)過(guò)圓心

  126切線長(zhǎng)定理 從圓外一點(diǎn)引圓的兩條切線,它們的切線長(zhǎng)相等,圓心和這一點(diǎn)的連線平分兩條切線的夾角

  127圓的外切四邊形的兩組對(duì)邊的和相等

  128弦切角定理 弦切角等于它所夾的弧對(duì)的圓周角

  129推論 如果兩個(gè)弦切角所夾的弧相等,那么這兩個(gè)弦切角也相等

  130相交弦定理 圓內(nèi)的兩條相交弦,被交點(diǎn)分成的兩條線段長(zhǎng)的積相等

  131推論 如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線段的比例中項(xiàng)

  132切割線定理 從圓外一點(diǎn)引圓的切線和割線,切線長(zhǎng)是這點(diǎn)到割線與圓交點(diǎn)的兩條線段長(zhǎng)的比例中項(xiàng)

  133推論 從圓外一點(diǎn)引圓的兩條割線,這一點(diǎn)到每條割線與圓的交點(diǎn)的兩條線段長(zhǎng)的積相等

  134如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線上

  135①兩圓外離 d>R+r ②兩圓外切 d=R+r

 、蹆蓤A相交 R-r<d<R+r(R>r)

 、軆蓤A內(nèi)切 d=R-r(R>r) ⑤兩圓內(nèi)含d<R-r(R>r)

  136定理 相交兩圓的連心線垂直平分兩圓的公共弦

  137定理 把圓分成n(n≥3):

 、乓来芜B結(jié)各分點(diǎn)所得的多邊形是這個(gè)圓的內(nèi)接正n邊形

 、平(jīng)過(guò)各分點(diǎn)作圓的切線,以相鄰切線的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形

  138定理 任何正多邊形都有一個(gè)外接圓和一個(gè)內(nèi)切圓,這兩個(gè)圓是同心圓

  139正n邊形的每個(gè)內(nèi)角都等于(n-2)×180°/n

  140定理 正n邊形的半徑和邊心距把正n邊形分成2n個(gè)全等的直角三角形

  141正n邊形的面積Sn=pnrn/2 p表示正n邊形的周長(zhǎng)

  142正三角形面積√3a/4 a表示邊長(zhǎng)

  143如果在一個(gè)頂點(diǎn)周?chē)衚個(gè)正n邊形的角,由于這些角的和應(yīng)為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4

  144弧長(zhǎng)公式:L=n兀R/180

  145扇形面積公式:S扇形=n兀R^2/360=LR/2

  146內(nèi)公切線長(zhǎng)= d-(R-r) 外公切線長(zhǎng)= d-(R+r)

    點(diǎn)擊預(yù)約→99元快課,一次課聽(tīng)懂一個(gè)知識(shí)點(diǎn)

點(diǎn)擊領(lǐng)取500+份上海初中試題/知識(shí)點(diǎn)資料領(lǐng)取

預(yù)約課程還可獲贈(zèng)免費(fèi)的學(xué)習(xí)復(fù)習(xí)診斷

點(diǎn)擊領(lǐng)取
加入QQ群,與更多家長(zhǎng)交流經(jīng)驗(yàn)。。
  • 上海小學(xué)交流群:639215153
  • 上海小學(xué)家長(zhǎng)學(xué)習(xí)交流
  • 上海初中交流群:611612914
  • 上海中學(xué)家長(zhǎng)學(xué)習(xí)交流
  • 上海高中交流群:959031473
  • 高考家長(zhǎng)學(xué)習(xí)交流群
  • 上海幼升小交流群:772707735
  • 上海幼兒園升小學(xué)家長(zhǎng)學(xué)習(xí)交流群

    相關(guān)課程推薦

    小學(xué)1對(duì)1全科課

    定制元/次

    咨詢(xún)電話:400-810-2680

    點(diǎn)我預(yù)約

    初中1對(duì)1全科課

    定制元/次

    咨詢(xún)電話:400-810-2680

    點(diǎn)我預(yù)約

    高中1對(duì)1全科課

    定制元/次

    咨詢(xún)電話:400-810-2680

    點(diǎn)我預(yù)約
    意見(jiàn)反饋電話:400-810-2680  郵箱:advice@xueersi.com
    相關(guān)新聞
    初中文章推薦
    中考資訊