資訊

上海

課程咨詢: 400-810-2680

預(yù)約高中1對1精品課程(面授/在線),滿足學(xué)員個(gè)性化學(xué)習(xí)需求 馬上報(bào)名↓

獲取驗(yàn)證碼

請選擇城市

  • 上海

請選擇意向校區(qū)

請選擇年級

請選擇科目

立即體驗(yàn)
當(dāng)前位置:北京學(xué)而思1對1 > 初中教育 > 初中數(shù)學(xué) > 正文
內(nèi)容頁banner-1對1體驗(yàn)

初三數(shù)學(xué)學(xué)什么(三篇)

2018-09-17 17:32:02  來源:網(wǎng)絡(luò)整理

初中數(shù)學(xué)必備常用公式匯總

  初三數(shù)學(xué)學(xué)什么(三篇)!數(shù)學(xué)學(xué)習(xí)是再創(chuàng)造再發(fā)現(xiàn)的過程,必須要主體的積極參與才能實(shí)現(xiàn)這個(gè)過程,在數(shù)學(xué)課堂教學(xué)中提高孩子的參與度,不僅具有提高數(shù)學(xué)教學(xué)質(zhì)量的近期作用,而且具有提高孩子素質(zhì)的遠(yuǎn)期功效。下面為大家分享初三數(shù)學(xué)學(xué)什么(三篇)!希望能夠幫到大家!

    初三數(shù)學(xué)學(xué)什么(篇一)

  對所有一元二次方程都適用,但特別對于二次項(xiàng)系數(shù)為1,一次項(xiàng)系數(shù)為偶數(shù)的一元二次方程用配方法會(huì)更為簡單。

  【配方法】

  一般步驟:

  先進(jìn)步:使方程左邊為二次項(xiàng)和一次項(xiàng),右邊為常數(shù)項(xiàng);

  第二步:方程兩邊同時(shí)除以二次項(xiàng)系數(shù);

  第三步:方程兩邊都加上一次項(xiàng)系數(shù)一半的平方,把原方程化為 的形式;

  第四步:用直接開平方解變形后的方程.

  古希臘數(shù)學(xué)家丟番圖(公元250年前后)在《算術(shù)》中就提到了一元二次方程的問題,不過當(dāng)時(shí)古希臘人還沒有尋求到它的求根公式,只能用圖解等方法來求解.在歐幾里得的《幾何原本》中,形如x2+ax=b2(a>0,b>0)的方程的圖解法是:以和b為兩直角邊作Rt△ABC,再在斜邊上截取BD=,則AD的長就是所求方程的解.

  注意:

  1.一元二次方程得一般形式特點(diǎn)為方程右邊是0,方程左邊是關(guān)于x的二次整式。

  2.“a≠0”是一元二次方程的一個(gè)重要組成部分,也是它的一個(gè)判斷標(biāo)準(zhǔn)之一,但b、c可以為0。若沒有出現(xiàn)bx,則b=0;沒有出現(xiàn)c,則c=0。

  3.可以通過“去分母,去括號,移項(xiàng),合并同類項(xiàng)”等步驟得到一元二次方程得一般形式。

  【因式分解法】

  一般步驟:

  先進(jìn)步:將已知方程化為一般形式,使方程右端為 0;

  第二步:將左端的二次三項(xiàng)式分解為兩個(gè)一次因式的積;

  第三步:方程左邊兩個(gè)因式分別為 0,得到兩個(gè)一次方程,它們的解就是原方程的解.

  一、平行四邊形

  1、平行四邊形的性質(zhì)定理:

  平行四邊形的對邊相等。

  平行四邊形的對角相等(鄰角互補(bǔ))。

  平行四邊形的對角線互相平分。

  2、平行四邊形的判定方法:

  定義:兩組對邊分別平行的四邊形是平行四邊形。

  判定定理:兩組對邊分別相等的四邊形是平行四邊形。

  一組對邊平行且相等的四邊形是平行四邊形。

  兩組對角分別相等的四邊形是平行四邊形。

  對角線互相平分的四邊形是平行四邊形。

  二、矩形

  1、矩形的性質(zhì)定理:

  矩形的四個(gè)角都是直角。

  矩形的對角線相等。

  2、矩形的判定方法:

  定義:有一個(gè)角是直角的平行四邊形是矩形。

  判定定理:有三個(gè)角是直角的四邊形是矩形。

  對角線相等的平行四邊形是矩形。

  (對角線相等且互相平分的四邊形是矩形。)

  三、菱形

  1、菱形的性質(zhì)定理:

  菱形的四條邊都相等。

  菱形的對角線相等,并且每條對角線平分一組對角。

  2、菱形的判定方法:

  定義:有一組鄰邊相等的平行四邊形是菱形。

  判定定理:四條邊都相等的四邊形是菱形。

  對角線互相垂直的平行四邊形是菱形。

  (對角線互相垂直且平分的四邊形是菱形。)

  四、正方形

  1、正方形的性質(zhì)定理:

  正方形的四個(gè)角都是直角,四條邊都相等。

  正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角。

  2、正方形的判定定理:

  l 有一個(gè)角是直角的菱形是正方形。

  l 有一組鄰邊相等的矩形是正方形。

  l 有一個(gè)角是直角且有一組鄰邊相等的平行四邊形是正方形。

  l 對角線相等的菱形是正方形。

  l 對角線互相垂直的矩形是正方形。

  l 對角線相等且互相垂直的平行四邊形是正方形。

  l 對角線相等且互相垂直、平分的四邊形是正方形。

  五、等腰梯形

  1、等腰梯形的性質(zhì)定理:

  等腰梯形的兩條對角線相等。

  等腰梯形在同一底上的兩個(gè)角相等。

  2、等腰梯形的判定方法:

  定義:兩腰相等的梯形是等腰梯形。

  判定定理:在同一底上的兩個(gè)角相等的梯形是等腰梯形。

  六、三角形的中位線

  1、定義:

  連接三角形兩邊中點(diǎn)的線段叫做三角形的中位線。

  2、性質(zhì)定理:

  三角形的中位線平行于第三邊,且等于第三邊的一半。

  七、其他定理或結(jié)論:

  1、夾在兩條平行線間的平行線段相等。

  2、三角形的一條中位線與第三邊上的中線互相平分。

  3、菱形的面積等于其對角線乘積的一半。

  4、連接三角形每兩邊的中點(diǎn),就得到了四個(gè)全等的三角形和三個(gè)平行四邊形,所得的三角形的周長是原三角形周長的 ,所得的三角形的面積是原三角形面積的 。

  八、中點(diǎn)四邊形

  1. 依次連接四邊形各邊中點(diǎn)所得到的新四邊形的形狀,取決于原四邊形兩條對角線的位置關(guān)系和數(shù)量關(guān)系,即兩條對角線是否相等或者是否垂直。

  2. 依次連接任意四邊形各邊的中點(diǎn),就得到一個(gè)平行四邊形。

  3. 依次連接平行四邊形各邊的中點(diǎn),就得到一個(gè)平行四邊形。

  4. 依次連接矩形各邊的中點(diǎn),就得到一個(gè)菱形。

  5. 依次連接菱形各邊的中點(diǎn),就得到一個(gè)矩形。

  6. 依次連接正方形各邊的中點(diǎn),就得到一個(gè)正方形。

  7. 依次連接等腰梯形各邊的中點(diǎn),就得到一個(gè)菱形。

  8. 依次連接兩條對角線相等的四邊形各邊的中點(diǎn),就得到一個(gè)菱形。

  9. 依次連接兩條對角線互相垂直的四邊形各邊的中點(diǎn),就得到一個(gè)矩形。

  10. 依次連接兩條對角線相等且互相垂直的四邊形各邊的中點(diǎn),就得到一個(gè)正方形

  初三數(shù)學(xué)學(xué)什么(篇二)

  旋轉(zhuǎn)、圓、二次函數(shù)、概率初步、相似、銳角三角函數(shù)、投影與視圖。

  旋轉(zhuǎn)是繼平移和對稱后,我們學(xué)習(xí)的第三種全等變換。除需要認(rèn)識及準(zhǔn)確描述旋轉(zhuǎn)外,還要加強(qiáng)對旋轉(zhuǎn)變換性質(zhì)的理解。只有真正理解了變換的性質(zhì),才能結(jié)合變換性質(zhì)及其他知識,解決操作探究、論證、猜想證明等新題型。

  圓的有關(guān)概念、定理很多,有些容易混淆,把容易混淆的概念進(jìn)行比較,這樣掌握起來更有效。與圓有關(guān)的一直是中考的熱點(diǎn),在學(xué)習(xí)時(shí)應(yīng)注重對有關(guān)方法的理解,避免死記硬背,簡單套用公式。

  在學(xué)習(xí)二次函數(shù)部分時(shí),有效利用二次函數(shù)的對稱性,往往能夠起到化難為易,化繁為簡的作用。解題時(shí)將已知條件與圖象結(jié)合即數(shù)形結(jié)合,也是解決問題行之有效的辦法之一。另外,二次函數(shù)與幾何圖形、動(dòng)點(diǎn)、不等式等的結(jié)合題目,也常常成為考查的熱點(diǎn)。

  要掌握概率的知識,就要正確理解概率的有關(guān)概念。如能區(qū)分必然事件與隨機(jī)事件;能通過列表或樹形圖來隨機(jī)事件的概率。

  相似三角形部分要熟練掌握相似三角形的性質(zhì)與判定。相似三角形的性質(zhì)和判定是解綜合題中常用的工具。

  銳角三角函數(shù)這一部分要關(guān)注銳角三角函數(shù)的定義以及解直角三角形的實(shí)際應(yīng)用。運(yùn)用解直角三角形解決實(shí)際問題往往要構(gòu)造直角三角形,將問題的已知與未知轉(zhuǎn)化為與直角三角形相關(guān)的條件。

  視圖與投影主要以三視圖、展開與折疊為背景,考查空間觀念。同學(xué)們還要能區(qū)分“平行投影”與“中心投影”。

  初三數(shù)學(xué)學(xué)什么(篇三)

  圓的面積s=π×r×r  其中,π是周圍率,約等于3.14  r是圓的半徑! A的周長公式為:C=2πR.C代表圓的周長,r代表圓的半徑。圓的面積公式為:S=πR2(R的平方).S代表圓的面積,r為圓的半徑! E圓周長公式  橢圓周長公式:L=2πb+4(a-b)  橢圓周長定理:橢圓的周長等于該橢圓短半軸長為半徑的圓周長(2πb)加上四倍的該橢圓長半軸長(a)與短半軸長(b)的差! E圓面積公式  橢圓面積公式:S=πab  橢圓面積定理:橢圓的面積等于圓周率(π)乘該橢圓長半軸長(a)與短半軸長(b)的乘積! ∫陨蠙E圓周長、面積公式中雖然沒有出現(xiàn)橢圓周率T,但這兩個(gè)公式都是通過橢圓周率T推導(dǎo)演變而來。常數(shù)為體,公式為用。

  初三數(shù)學(xué)重點(diǎn)知識點(diǎn)(二)  1.直線與圓有先進(jìn)公共點(diǎn)時(shí),叫做直線與圓相切。  2.三角形的外接圓的圓心叫做三角形的外心。  3.弦切角等于所夾的弧所對的圓心角。  4.三角形的內(nèi)切圓的圓心叫做三角形的內(nèi)心。  5.垂直于半徑的直線必為圓的切線! 6.過半徑的外端點(diǎn)并且垂直于半徑的直線是圓的切線! 7.垂直于半徑的直線是圓的切線! 8.圓的切線垂直于過切點(diǎn)的半徑。

  初三數(shù)學(xué)重點(diǎn)知識點(diǎn)(三)  1、矩形的概念  有一個(gè)角是直角的平行四邊形叫做矩形! 2、矩形的性質(zhì)  (1)具有平行四邊形的一切性質(zhì)  (2)矩形的四個(gè)角都是直角  (3)矩形的對角線相等  (4)矩形是軸對稱圖形  3、矩形的判定  (1)定義:有一個(gè)角是直角的平行四邊形是矩形(2)定理1:有三個(gè)角是直角的四邊形是矩形  (3)定理2:對角線相等的平行四邊形是矩形  4、矩形的面積:S矩形=長×寬=ab

  初三數(shù)學(xué)重點(diǎn)知識點(diǎn)(四)  1、正方形的概念  有一組鄰邊相等并且有一個(gè)角是直角的平行四邊形叫做正方形! 2、正方形的性質(zhì)  (1)具有平行四邊形、矩形、菱形的一切性質(zhì);  (2)正方形的四個(gè)角都是直角,四條邊都相等;  (3)正方形的兩條對角線相等,并且互相垂直平分,每一條對角線平分一組對角;  (4)正方形是軸對稱圖形,有4條對稱軸;  (5)正方形的一條對角線把正方形分成兩個(gè)全等的等腰直角三角形,兩條對角線把正方形分成四個(gè)全等的小等腰直角三角形;  (6)正方形的一條對角線上的一點(diǎn)到另一條對角線的兩端點(diǎn)的距離相等! 3、正方形的判定  (1)判定一個(gè)四邊形是正方形的主要依據(jù)是定義,途徑有兩種:  先證它是矩形,再證有一組鄰邊相等! ∠茸C它是菱形,再證有一個(gè)角是直角。  (2)判定一個(gè)四邊形為正方形的一般順序如下:  先證明它是平行四邊形;  再證明它是菱形(或矩形);  較后證明它是矩形(或菱形)。

 

小編推薦:

  初中數(shù)學(xué)題100道

  初中數(shù)學(xué)幾何思維導(dǎo)圖

  初中數(shù)學(xué)知識點(diǎn)歸納

 

 

 

  愛智康初中教育頻道分享的初三數(shù)學(xué)學(xué)什么(三篇)到這里就結(jié)束啦,數(shù)學(xué)學(xué)習(xí)是一個(gè)不斷積累的過程,就像是馬拉松一樣,雖然不需要你要快,但是一定需要你一步一步的去跑,去累積,只有這樣,我們才能逐漸解決各個(gè)問題,讓數(shù)學(xué)學(xué)習(xí)無后顧之憂。更多有關(guān)初中輔導(dǎo)的課程,請直接撥打免費(fèi)咨詢電話:!

文章下長方圖-初中12本名著精華版資料包
立即領(lǐng)取中小學(xué)熱門學(xué)習(xí)資料
*我們在24小時(shí)內(nèi)與您取得電話聯(lián)系
側(cè)邊圖-1對5課程