掃描注冊(cè)有禮
讓進(jìn)步看得見
熱門課程先知道
預(yù)約高中1對(duì)1精品課程(面授/在線),滿足學(xué)員個(gè)性化學(xué)習(xí)需求 馬上報(bào)名↓
點(diǎn)擊領(lǐng)取→北京初二上期中?贾R(shí)點(diǎn)、常功課型匯總
北京初二人教版全等三角形知識(shí)點(diǎn)!同學(xué)們?cè)趯W(xué)習(xí)的時(shí)候不要偷懶,該背的背該記得記。重要知識(shí)點(diǎn)不等于復(fù)習(xí)重點(diǎn),復(fù)習(xí)的重點(diǎn)對(duì)每一個(gè)人來說應(yīng)該是不同的,重要的知識(shí)點(diǎn)與自己薄弱環(huán)節(jié)都是復(fù)習(xí)的重點(diǎn)。下面,小編為大家?guī)?span style="color:#f00;">北京初二人教版全等三角形知識(shí)點(diǎn)。
定義:能夠完全重合的兩個(gè)三角形稱為全等三角形。(注:全等三角形是相似三角形中相似比為1:1的特殊情況)當(dāng)兩個(gè)三角形完全重合時(shí),互相重合的頂點(diǎn)叫做對(duì)應(yīng)頂點(diǎn),互相重合的邊叫做對(duì)應(yīng)邊,互相重合的角叫做對(duì)應(yīng)角。
由此,可以得出:全等三角形的對(duì)應(yīng)邊相等,對(duì)應(yīng)角相等。
(1)全等三角形對(duì)應(yīng)角所對(duì)的邊是對(duì)應(yīng)邊,兩個(gè)對(duì)應(yīng)角所夾的邊是對(duì)應(yīng)邊;
(2)全等三角形對(duì)應(yīng)邊所對(duì)的角是對(duì)應(yīng)角,兩條對(duì)應(yīng)邊所夾的角是對(duì)應(yīng)角;(3)有公共邊的,公共邊一定是對(duì)應(yīng)邊;
(4)有公共角的,角一定是對(duì)應(yīng)角;
(5)有對(duì)頂角的,對(duì)頂角一定是對(duì)應(yīng)角;表示:全等用≌表示,讀作全等于。
判定公理
1、三組對(duì)應(yīng)邊分別相等的兩個(gè)三角形全等(簡稱SSS或邊邊邊),這一條也說明了三角形具有穩(wěn)定性的原因。
2、有兩邊及其夾角對(duì)應(yīng)相等的兩個(gè)三角形全等(SAS或邊角邊)。
3、有兩角及其夾邊對(duì)應(yīng)相等的兩個(gè)三角形全等(ASA或角邊角)。由3可推到
4、有兩角及其一角的對(duì)邊對(duì)應(yīng)相等的兩個(gè)三角形全等(AAS或角角邊)5、直角三角形全等條件有:斜邊及一直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等(HL或斜邊,直角邊) 所以,SSS,SAS,ASA,AAS,HL均為判定三角形全等的定理。注意:在全等的判定中,沒有AAA角角角和SSA(特例:直角三角形為HL,屬于SSA)邊邊角,這兩種情況都不能先進(jìn)確定三角形的形狀。 A是英文角的縮寫(angle),S是英文邊的縮寫(side)。H是英文斜邊的縮寫(Hypotenuse),L是英文直角邊的縮寫(leg)。
6.三條中線(或高、角分線)分別對(duì)應(yīng)相等的兩個(gè)三角形全等。
性質(zhì)三角形全等的條件:
1、全等三角形的對(duì)應(yīng)角相等。
2、全等三角形的對(duì)應(yīng)邊相等
3、全等三角形的對(duì)應(yīng)頂點(diǎn)相等。
4、全等三角形的對(duì)應(yīng)邊上的高對(duì)應(yīng)相等。
5、全等三角形的對(duì)應(yīng)角平分線相等。
6、全等三角形的對(duì)應(yīng)中線相等。
7、全等三角形面積相等。
8、全等三角形周長相等。
9、全等三角形可以完全重合。
點(diǎn)擊了解>>>學(xué)而思初二暑期課程&咨詢課程請(qǐng)撥打:
三角形全等的方法:
1、三邊對(duì)應(yīng)相等的兩個(gè)三角形全等。(SSS)
2、兩邊和它們的夾角對(duì)應(yīng)相等的兩個(gè)三角形全等。(SAS)
3、兩角和它們的夾邊對(duì)應(yīng)相等的兩個(gè)三角形全等。(ASA)
4、有兩角及其一角的對(duì)邊對(duì)應(yīng)相等的兩個(gè)三角形全等(AAS)
5、斜邊和一條直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等。(HL)
推論要驗(yàn)證全等三角形,不需驗(yàn)證所有邊及所有角也對(duì)應(yīng)地相同。以下判定,是由三個(gè)對(duì)應(yīng)的部分組成,即全等三角形可透過以下定義來判定:
S.S.S. (Side-Side-Side)(邊、邊、邊):各三角形的三條邊的長度都對(duì)應(yīng)地相等的話,該兩個(gè)三角形就是全等。
S.A.S. (Side-Angle-Side)(邊、角、邊):各三角形的其中兩條邊的長度都對(duì)應(yīng)地相等,且兩條邊夾著的角都對(duì)應(yīng)地相等的話,該兩個(gè)三角形就是全等。
A.S.A. (Angle-Side-Angle)(角、邊、角):各三角形的其中兩個(gè)角都對(duì)應(yīng)地相等,且兩個(gè)角夾著的邊都對(duì)應(yīng)地相等的話,該兩個(gè)三角形就是全等。
A.A.S. (Angle-Angle-Side)(角、角、邊):各三角形的其中兩個(gè)角都對(duì)應(yīng)地相等,且沒有被兩個(gè)角夾著的邊都對(duì)應(yīng)地相等的話,該兩個(gè)三角形就是全等。
R.H.S. / H.L. (Right Angle-Hypotenuse-Side)(直角、斜邊、邊):各三角形的直角、斜邊及另外一條邊都對(duì)應(yīng)地相等的話,該兩個(gè)三角形就是全等。但并非運(yùn)用任何三個(gè)相等的部分便能判定三角形是否全等。
以下的判定同樣是運(yùn)用兩個(gè)三角形的三個(gè)相等的部分,但不能判定全等三角形:
A.A.A. (Angle-Angle-Angle)(角、角、角):各三角形的任何三個(gè)角都對(duì)應(yīng)地相等,但這并不能判定全等三角形,但則可判定相似三角形。
A.S.S. (Angle-Side-Side)(角、邊、邊):各三角形的其中一個(gè)角都相等,且其余的兩條邊(沒有夾著該角),但這并不能判定全等三角形,除非是直角三角形。
但若是直角三角形的話,應(yīng)以R.H.S.來判定。
1、性質(zhì)中三角形全等是條件,結(jié)論是對(duì)應(yīng)角、對(duì)應(yīng)邊相等。 而全等的判定卻剛好相反。
2、利用性質(zhì)和判定,學(xué)會(huì)準(zhǔn)確地找出兩個(gè)全等三角形中的對(duì)應(yīng)邊與對(duì)應(yīng)角是關(guān)鍵。在寫兩個(gè)三角形全等時(shí),一定把對(duì)應(yīng)的頂點(diǎn),角、邊的順序?qū)懸恢拢瑸檎覍?duì)應(yīng)邊,角提供方便。
3,當(dāng)圖中出現(xiàn)兩個(gè)以上等邊三角形時(shí),應(yīng)首先考慮用SAS找全等三角形。
4、用在實(shí)際中,一般我們用全等三角形測相等的距離。以及相等的角,可以用于工業(yè)和軍事。
5、三角形具有一定的穩(wěn)定性,所以我們用這個(gè)原理來做腳手架及其他支撐物體。
數(shù)學(xué)需要大家在理解的前提下進(jìn)行記憶,不要死記硬背。想了解相關(guān)課程的同學(xué),請(qǐng)撥打?qū)W而思愛智康免費(fèi)咨詢電話:!
北京初二人教版全等三角形知識(shí)點(diǎn)就給大家分享到這里,另外學(xué)而思學(xué)科老師還給大家整理了一份《初二期中資料合集》。
點(diǎn)擊領(lǐng)。骸北京初二上期中?贾R(shí)點(diǎn)、常功課型匯總》
查缺補(bǔ)漏,助你備戰(zhàn)各項(xiàng)診斷!
部分資料截圖如下:
點(diǎn)擊鏈接領(lǐng)取完整版資料:https://jinshuju.net/f/hVFz8D
同時(shí)也向您的孩子推薦學(xué)而思初二暑期課程,點(diǎn)擊鏈接:https://jinshuju.net/f/IjW9lN 或者下方圖片即可預(yù)約
相關(guān)推薦:
大家都在看
限時(shí)免費(fèi)領(lǐng)取
學(xué)習(xí)相關(guān)