資訊

上海

課程咨詢(xún): 400-810-2680

預(yù)約高中1對(duì)1精品課程(面授/在線(xiàn)),滿(mǎn)足學(xué)員個(gè)性化學(xué)習(xí)需求 馬上報(bào)名↓

獲取驗(yàn)證碼

請(qǐng)選擇城市

  • 上海

請(qǐng)選擇意向校區(qū)

請(qǐng)選擇年級(jí)

請(qǐng)選擇科目

立即體驗(yàn)
當(dāng)前位置:北京學(xué)而思1對(duì)1 > 初中輔導(dǎo) > 北京初三零模 > 正文
內(nèi)容頁(yè)banner-一對(duì)一體驗(yàn)

2021年海淀區(qū)初三零模

2021-08-09 08:52:24  來(lái)源:網(wǎng)絡(luò)整理

 點(diǎn)擊領(lǐng)取_2016-2021北京市各區(qū)初三零模試卷匯總(60套),免費(fèi)下載!

2021年海淀區(qū)初三零模!同學(xué)們?cè)诔踔邢胍獙W(xué)好數(shù)學(xué)是一定要背定義的,這些定義很好理解但是必須要牢記,這個(gè)定義部分雖然不是考試重點(diǎn),但是考試會(huì)根據(jù)定義出很多變形的題目。下面,小編為大家?guī)?lái)2021年海淀區(qū)初三零模。

以上是部分資料截圖,點(diǎn)擊下方鏈接領(lǐng)取完整版

https://jinshuju.net/f/KDhrFI

點(diǎn)擊了解>>>初三總復(fù)習(xí)專(zhuān)項(xiàng)課 咨詢(xún)課程請(qǐng)撥打:400-810-2680

考點(diǎn)一:一元二次方程的有關(guān)概念(意義、一般形式、根的概念等)

  例1 (2012•蘭州)下列方程中是關(guān)于x的一元二次方程的是(  )

  A.x2+=0 B.ax2+bx+c=0

  C.(x-1)(x+2)=1 D.3x2-2xy-5y2=0

  思路分析:一元二次方程必須滿(mǎn)足四個(gè)條件:

  (1)未知數(shù)的較高次數(shù)是2;

  (2)二次項(xiàng)系數(shù)不為0;

  (3)是整式方程;

  (4)含有一個(gè)未知數(shù).由這四個(gè)條件對(duì)四個(gè)選項(xiàng)進(jìn)行驗(yàn)證,滿(mǎn)足這四個(gè)條件者為正確答案.

  解:A、原方程為分式方程;故本選項(xiàng)錯(cuò)誤;

  B、當(dāng)a=0時(shí),即ax2+bx+c=0的二次項(xiàng)系數(shù)是0時(shí),該方程就不是一元二次方程;故本選項(xiàng)錯(cuò)誤;

  C、由原方程,得x2+x-3=0,符合一元二次方程的要求;故本選項(xiàng)正確;

  D、方程3x2-2xy-5y2=0中含有兩個(gè)未知數(shù);故本選項(xiàng)錯(cuò)誤.

  故選C.

  點(diǎn)評(píng):本題考查了一元二次方程的概念,判斷一個(gè)方程是否是一元二次方程,首先要看是否是整式方程,然后看化簡(jiǎn)后是否是只含有一個(gè)未知數(shù)且未知數(shù)的較高次數(shù)是2.

  對(duì)應(yīng)訓(xùn)練

  1.(2012•惠山區(qū))一元二次方程(a+1)x2-ax+a2-1=0的一個(gè)根為0,則a= .

  1.1

  解:∵一元二次方程(a+1)x2-ax+a2-1=0的一個(gè)根為0,

  ∴a+1≠0且a2-1=0,

  ∴a=1.

  故答案為1.

  點(diǎn)評(píng):本題考查了一元二次方程的定義:含一個(gè)未知數(shù),并且未知數(shù)的較高次數(shù)為2的整式方程叫一元二次方程,其一般式為ax2+bx+c=0(a≠0).也考查了一元二次方程的解的定義.

  考點(diǎn)二:一元二次方程的解法

  例2 (2012•安徽)解方程:x2-2x=2x+1.

  思路分析:先移項(xiàng),把2x移到等號(hào)的左邊,再合并同類(lèi)項(xiàng),較后配方,方程的左右兩邊同時(shí)加上一次項(xiàng)系數(shù)一半的平方,左邊就是完全平方式,右邊就是常數(shù),然后利用平方根的定義即可求解.

  解:∵x2-2x=2x+1,

  ∴x2-4x=1,

  ∴x2-4x+4=1+4,

  (x-2)2=5,

  ∴x-2=±,

  ∴x1=2+,x2=2-.

  點(diǎn)評(píng):此題考查了配方法解一元二次方程,配方法的一般步驟:

  (1)把常數(shù)項(xiàng)移到等號(hào)的右邊;

  (2)把二次項(xiàng)的系數(shù)化為1;

  (3)等式兩邊同時(shí)加上一次項(xiàng)系數(shù)一半的平方;

  (4)選擇用配方法解一元二次方程時(shí),較好使方程的二次項(xiàng)的系數(shù)為1,一次項(xiàng)的系數(shù)是2的倍數(shù).

  例3 (2012•黔西南州)三角形的兩邊長(zhǎng)分別為2和6,第三邊是方程x2-10x+21=0的解,則第三邊的長(zhǎng)為(  )

  A.7 B.3 C.7或3 D.無(wú)法確定

  思路分析:將已知的方程x2-10x+21=0左邊分解因式,利用兩數(shù)相乘積為0,兩因式中至少有一個(gè)為0轉(zhuǎn)化為兩個(gè)一元一次方程,求出一次方程的解得到原方程的解為3或7,利用三角形的兩邊之和大于第三邊進(jìn)行判斷,得到滿(mǎn)足題意的第三邊的長(zhǎng).

  解:x2-10x+21=0,

  因式分解得:(x-3)(x-7)=0,

  解得:x1=3,x2=7,

  ∵三角形的第三邊是x2-10x+21=0的解,

  ∴三角形的第三邊為3或7,

  當(dāng)三角形第三邊為3時(shí),2+3<6,不能構(gòu)成三角形,舍去;

  當(dāng)三角形第三邊為7時(shí),三角形三邊分別為2,6,7,能構(gòu)成三角形,

  則第三邊的長(zhǎng)為7.

  故選A

  點(diǎn)評(píng):此題考查了利用因式分解法求一元二次方程的解,以及三角形的邊角關(guān)系,利用因式分解法解方程時(shí),首先將方程右邊化為0,左邊分解因式,然后利用兩數(shù)相乘積為0,兩因式中至少有一個(gè)為0轉(zhuǎn)化兩個(gè)一次方程來(lái)求解.

  對(duì)應(yīng)訓(xùn)練

  2.(2012•臺(tái)灣)若一元二次方程式x2-2x-3599=0的兩根為a、b,且a>b,則2a-b之值為何?(  )

  A.-57 B.63 C.179 D.181

  2.D

  2.解:x2-2x-3599=0,

  移項(xiàng)得:x2-2x=3599,

  x2-2x+1=3599+1,

  即(x-1)2=3600,

  x-1=60,x-1=-60,

  解得:x=61,x=-59,

  ∵一元二次方程式x2-2x-3599=0的兩根為a、b,且a>b,

  ∴a=61,b=-59,

  ∴2a-b=2×61-(-59)=181,

  故選D.

  3.(2012•南充)方程x(x-2)+x-2=0的解是(  )

  A.2 B.-2,1 C.-1 D.2,-1

  3.D

  考點(diǎn)三:根的判別式的運(yùn)用

  例3 (2012•襄陽(yáng))如果關(guān)于x的一元二次方程kx2-x+1=0有兩個(gè)不相等的實(shí)數(shù)根,那么k的取值范圍是(  )

  A.k< B.k<且k≠0 C.-≤k< D.-≤k<且k≠0

  思路分析:根據(jù)方程有兩個(gè)不相等的實(shí)數(shù)根,則△>0,由此建立關(guān)于k的不等式,然后就可以求出k的取值范圍.

  解:由題意知:2k+1≥0,k≠0,△=2k+1-4k>0,

  ∴-≤k<且k≠0.

  故選D.

  點(diǎn)評(píng):此題考查了一元二次方程根的判別式,一元二次方程根的判別式△=b2-4ac.一元二次方程根的情況與判別式△的關(guān)系為:

  (1)△>0⇔方程有兩個(gè)不相等的實(shí)數(shù)根;

  (2)△=0⇔方程有兩個(gè)相等的實(shí)數(shù)根;

  (3)△<0⇔方程沒(méi)有實(shí)數(shù)根.

  例4 (2012•綿陽(yáng))已知關(guān)于x的方程x2-(m+2)x+(2m-1)=0.

  (1)求證:方程恒有兩個(gè)不相等的實(shí)數(shù)根;

  (2)若此方程的一個(gè)根是1,請(qǐng)求出方程的另一個(gè)根,并求以此兩根為邊長(zhǎng)的直角三角形的周長(zhǎng).

  思路分析:(1)根據(jù)關(guān)于x的方程x2-(m+2)x+(2m-1)=0的根的判別式的符號(hào)來(lái)證明結(jié)論;

  (2)根據(jù)一元二次方程的解的定義求得m值,然后由根與系數(shù)的關(guān)系求得方程的另一根.分類(lèi)討論:①當(dāng)該直角三角形的兩直角邊是1、3時(shí),由勾股定理得斜邊的長(zhǎng)度為:;②當(dāng)該直角三角形的直角邊和斜邊分別是1、3時(shí),由勾股定理得該直角三角形的另一直角邊為;再根據(jù)三角形的周長(zhǎng)公式進(jìn)行.

  解:(1)證明:∵△=(m+2)2-4(2m-1)=(m-2)2+4,

  ∴在實(shí)數(shù)范圍內(nèi),m無(wú)論取何值,(m-2)2+4≥4,即△≥4,

  ∴關(guān)于x的方程x2-(m+2)x+(2m-1)=0恒有兩個(gè)不相等的實(shí)數(shù)根;

  (2)根據(jù)題意,得

  12-1×(m+2)+(2m-1)=0,

  解得,m=2,

  則方程的另一根為:3;

 、佼(dāng)該直角三角形的兩直角邊是1、3時(shí),由勾股定理得斜邊的長(zhǎng)度為:;

  該直角三角形的周長(zhǎng)為1+3+=4+;

 、诋(dāng)該直角三角形的直角邊和斜邊分別是1、3時(shí),由勾股定理得該直角三角形的另一直角邊為2;則該直角三角形的周長(zhǎng)為1+3+2=4+2.

  點(diǎn)評(píng):本題綜合考查了勾股定理、根的判別式、一元二次方程解的定義.解答(2)時(shí),采用了“分類(lèi)討論”的數(shù)學(xué)思想.

  對(duì)應(yīng)訓(xùn)練

  3.(2012•桂林)關(guān)于x的方程x2-2x+k=0有兩個(gè)不相等的實(shí)數(shù)根,則k的取值范圍是(  )

  A.k<1 B.k>1 C.k<-1 D.k>-1

  3.A.

  4.(2012•珠海)已知關(guān)于x的一元二次方程x2+2x+m=0.

  (1)當(dāng)m=3時(shí),判斷方程的根的情況;

  (2)當(dāng)m=-3時(shí),求方程的根.

  4.解:(1)∵當(dāng)m=3時(shí),

  △=b2-4ac=22-4×3=-8<0,

  ∴原方程無(wú)實(shí)數(shù)根;

  (2)當(dāng)m=-3時(shí),

  原方程變?yōu)閤2+2x-3=0,

  ∵(x-1)(x+3)=0,

  ∴x-1=0,x+3=0,

  ∴x1=1,x2=-3.

同學(xué)們好好準(zhǔn)備這次考試啊,中考的戰(zhàn)役已經(jīng)打響了,同學(xué)們要打起十二分的精神啊。想了解相關(guān)課程的同學(xué),請(qǐng)撥打?qū)W而思愛(ài)智康免費(fèi)咨詢(xún)電話(huà):400-810-2680

2021年海淀區(qū)初三零模就給大家分享到這里,另外學(xué)而思學(xué)科老師還給大家整理了一份《2016-2021北京市各區(qū)初三零模試卷匯總》。

  點(diǎn)擊領(lǐng)取:《2016-2021北京市各區(qū)初三零模試卷匯總》

部分資料截圖如下:

點(diǎn)擊鏈接領(lǐng)取完整版資料:https://jinshuju.net/f/KDhrFI

相關(guān)推薦:

 北京海淀初三零模試卷

 北京2021英語(yǔ)初三零模

文章來(lái)源于網(wǎng)絡(luò)整理,如有侵權(quán),請(qǐng)聯(lián)系刪除,郵箱fanpeipei@100tal.com

文章下長(zhǎng)方圖-作文精選
你可能感興趣的文章
立即領(lǐng)取中小學(xué)熱門(mén)學(xué)習(xí)資料
*我們?cè)?4小時(shí)內(nèi)與您取得電話(huà)聯(lián)系
側(cè)邊圖-1對(duì)1寒假