預約高中1對1精品課程(面授/在線),滿足學員個性化學習需求 馬上報名↓
高二數(shù)學:如何解立體幾何題?進入高二后,同學們就要有緊迫感,高考很快就到了。高二數(shù)學對好多同學來說,比較難學,其實只要你掌握好數(shù)學中的公式,公理,定理,掌握好解決數(shù)學題目的方法,數(shù)學的難題就迎刃而解了。下面跟隨愛智康高中部老師一起學習一下高二數(shù)學:如何解立體幾何題?希望對同學們有幫助!
高二數(shù)學:如何解立體幾何題?
1.平行、垂直位置關系的論證的策略:
(1)由已知想性質,由求證想判定,即分析法與綜合法相結合尋找證題思路。
(2)利用題設條件的性質適當添加輔助線(或面)是解題的常用方法之一。
(3)三垂線定理及其逆定理在高功課中使用的頻率較高,在證明線線垂直時應優(yōu)先考慮。
2.空間角的方法與技巧:
主要步驟:一作、二證、三算;若用向量,那就是一證、二算。
(1)兩條異面直線所成的角①平移法:②補形法:③向量法:
(2)直線和平面所成的角
、僮鞒鲋本和平面所成的角,關鍵是作垂線,找射影轉化到同一三角形中,或用向量。
、谟霉.
(3)二面角
、倨矫娼堑淖鞣ǎ(i)定義法;(ii)三垂線定理及其逆定理法;(iii)垂面法。
、谄矫娼堑姆ǎ
(i)找到平面角,然后在三角形中(解三角形)或用向量;(ii)射影面積法 ;(iii)向量夾角公式.
3. 空間距離的方法與技巧:
(1)求點到直線的距離:經(jīng)常應用三垂線定理作出點到直線的垂線,然后在相關的三角形中求解,也可以借助于面積相等求出點到直線的距離。
(2)求兩條異面直線間距離:一般先找出其公垂線,然后求其公垂線段的長。在不能直接作出公垂線的情況下,可轉化為線面距離求解(這種情況高考不做要求)。
(3)求點到平面的距離:一般找出(或作出)過此點與已知平面垂直的平面,利用面面垂直的性質過該點作出平面的垂線,進而;也可以利用“三棱錐體積法”直接求距離;有時直接利用已知點求距離比較困難時,我們可以把點到平面的距離轉化為直線到平面的距離,從而“轉移”到另一點上去求“點到平面的距離”。求直線與平面的距離及平面與平面的距離一般均轉化為點到平面的距離來求解。
4. 熟記一些常用的小結論,諸如:正四面體的體積公式是 ;面積射影公式;“立平斜關系式”;較小角定理。弄清楚棱錐的頂點在底面的射影為底面的內心、外心、垂心的條件,這可能是快速解答某些問題的前提。
5.平面圖形的翻折、立體圖形的展開等一類問題,要注意翻折前、展開前后有關幾何元素的“不變性”與“不變量”。
6.與球有關的題型,只能應用“老方法”,求出球的半徑即可。
7.立體幾何讀題:
(1)弄清楚圖形是什么幾何體,規(guī)則的、不規(guī)則的、組合體等。
(2)弄清楚幾何體結構特征。面面、線面、線線之間有哪些關系(平行、垂直、相等)。
(3)重點留意有哪些面面垂直、線面垂直,線線平行、線面平行等。
8、解題程序劃分為四個過程:
①弄清問題。也就是明白“求證題”的已知是什么?條件是什么?未知是什么?結論是什么?也就是我們常說的審題。②擬定計劃。找出已知與未知的直接或者間接的聯(lián)系。在弄清題意的基礎上,從中捕捉有用的信息,并及時提取記憶網(wǎng)絡中的有關信息,再將兩組信息資源作出合乎邏輯的有效組合,從而構思出一個成功的計劃。即是我們常說的思考。③執(zhí)行計劃。以簡明、準確、有序的數(shù)學語言和數(shù)學符號將解題思路表述出來,同時驗證解答的合理性。即我們所說的解答。④回顧。對所得的結論進行驗證,對解題方法進行總結。
小編推薦:
愛智康高中教育頻道分享的高二數(shù)學:如何解立體幾何題?到這里就結束啦,有關高考其他問題,請直接撥打免費咨詢電話:有專業(yè)老師幫大家解答