掃描注冊(cè)有禮
讓進(jìn)步看得見(jiàn)
熱門(mén)課程先知道
預(yù)約高中1對(duì)1精品課程(面授/在線),滿足學(xué)員個(gè)性化學(xué)習(xí)需求 馬上報(bào)名↓
點(diǎn)擊領(lǐng)取→北京初二下期中復(fù)習(xí)資料合集
北京初中數(shù)學(xué)二次函數(shù)知識(shí)點(diǎn)!相信很多同學(xué)們都會(huì)說(shuō)數(shù)學(xué)難,其實(shí)初中的數(shù)學(xué)真的并不難,只是同學(xué)們沒(méi)有掌握好學(xué)習(xí)方法,同學(xué)們要掌握了課本上的基礎(chǔ)知識(shí),并做適當(dāng)?shù)挠?xùn)練,總結(jié)出學(xué)習(xí)技巧和答題的技巧,就會(huì)輕松很多的。下面,小編為大家?guī)?lái)北京初中數(shù)學(xué)二次函數(shù)知識(shí)點(diǎn),希望可以給大家?guī)?lái)幫助喲~
北京初中數(shù)學(xué)二次函數(shù)知識(shí)點(diǎn)
I.定義與定義表達(dá)式
一般地,自變量x和因變量y之間存在如下關(guān)系:
y=ax^2+bx+c(a,b,c為常數(shù),a≠0,且a決定函數(shù)的開(kāi)口方向,a>0時(shí),開(kāi)口方向向上,a<0時(shí),開(kāi)口方向向下,IaI還可以決定開(kāi)口大小,IaI越大開(kāi)口就越小,IaI越小開(kāi)口就越大.)
則稱(chēng)y為x的二次函數(shù)。
二次函數(shù)表達(dá)式的右邊通常為二次三項(xiàng)式。
II.二次函數(shù)的三種表達(dá)式
一般式:y=ax^2;+bx+c(a,b,c為常數(shù),a≠0)
頂點(diǎn)式:y=a(x-h)^2;+k [拋物線的頂點(diǎn)P(h,k)]
交點(diǎn)式:y=a(x-x1)(x-x2) [僅于與x軸有交點(diǎn)A(x1,0)和 B(x2,0)的拋物線]
注:在3種形式的互相轉(zhuǎn)化中,有如下關(guān)系:
h=-b/2a k=(4ac-b^2;)/4a x1,x2=(-b±√b^2;-4ac)/2a
III.二次函數(shù)的圖像
在平面直角坐標(biāo)系中作出二次函數(shù)y=x²的圖像,
可以看出,二次函數(shù)的圖像是一條拋物線。
IV.拋物線的性質(zhì)
1.拋物線是軸對(duì)稱(chēng)圖形。對(duì)稱(chēng)軸為直線
x = -b/2a。
對(duì)稱(chēng)軸與拋物線先進(jìn)的交點(diǎn)為拋物線的頂點(diǎn)P。
特別地,當(dāng)b=0時(shí),拋物線的對(duì)稱(chēng)軸是y軸(即直線x=0)
2.拋物線有一個(gè)頂點(diǎn)P,坐標(biāo)為
P [ -b/2a ,(4ac-b^2;)/4a ]。
當(dāng)-b/2a=0時(shí),P在y軸上;當(dāng)Δ= b^2-4ac=0時(shí),P在x軸上。
3.二次項(xiàng)系數(shù)a決定拋物線的開(kāi)口方向和大小。
當(dāng)a>0時(shí),拋物線向上開(kāi)口;當(dāng)a<0時(shí),拋物線向下開(kāi)口。
|a|越大,則拋物線的開(kāi)口越小。
4.一次項(xiàng)系數(shù)b和二次項(xiàng)系數(shù)a共同決定對(duì)稱(chēng)軸的位置。
當(dāng)a與b同號(hào)時(shí)(即ab>0),對(duì)稱(chēng)軸在y軸左;
當(dāng)a與b異號(hào)時(shí)(即ab<0),對(duì)稱(chēng)軸在y軸右。
5.常數(shù)項(xiàng)c決定拋物線與y軸交點(diǎn)。
拋物線與y軸交于(0,c)
6.拋物線與x軸交點(diǎn)個(gè)數(shù)
Δ= b^2-4ac>0時(shí),拋物線與x軸有2個(gè)交點(diǎn)。
Δ= b^2-4ac=0時(shí),拋物線與x軸有1個(gè)交點(diǎn)。
Δ= b^2-4ac<0時(shí),拋物線與x軸沒(méi)有交點(diǎn)。
點(diǎn)擊了解>>>學(xué)而思愛(ài)智康中考沖刺精品課程&咨詢課程請(qǐng)撥打:
二次函數(shù)與一元二次方程
特別地,二次函數(shù)(以下稱(chēng)函數(shù))y=ax^2;+bx+c,
當(dāng)y=0時(shí),二次函數(shù)為關(guān)于x的一元二次方程(以下稱(chēng)方程),
即ax^2;+bx+c=0
此時(shí),函數(shù)圖像與x軸有無(wú)交點(diǎn)即方程有無(wú)實(shí)數(shù)根。
函數(shù)與x軸交點(diǎn)的橫坐標(biāo)即為方程的根。
答案補(bǔ)充
畫(huà)拋物線y=ax2時(shí),應(yīng)先列表,再描點(diǎn),較后連線。列表選取自變量x值時(shí)常以0為中心,選取便于、描點(diǎn)的整數(shù)值,描點(diǎn)連線時(shí)一定要用光滑曲線連接,并注意變化趨勢(shì)。
二次函數(shù)解析式的幾種形式
(1)一般式:y=ax2+bx+c (a,b,c為常數(shù),a≠0).
(2)頂點(diǎn)式:y=a(x-h)2+k(a,h,k為常數(shù),a≠0).
(3)兩根式:y=a(x-x1)(x-x2),其中x1,x2是拋物線與x軸的交點(diǎn)的橫坐標(biāo),即一元二次方程ax2+bx+c=0的兩個(gè)根,a≠0.
說(shuō)明:(1)任何一個(gè)二次函數(shù)通過(guò)配方都可以化為頂點(diǎn)式y(tǒng)=a(x-h)2+k,拋物線的頂點(diǎn)坐標(biāo)是(h,k),h=0時(shí),拋物線y=ax2+k的頂點(diǎn)在y軸上;當(dāng)k=0時(shí),拋物線a(x-h)2的頂點(diǎn)在x軸上;當(dāng)h=0且k=0時(shí),拋物線y=ax2的頂點(diǎn)在原點(diǎn)
答案補(bǔ)充
如果圖像經(jīng)過(guò)原點(diǎn),并且對(duì)稱(chēng)軸是y軸,則設(shè)y=ax^2;如果對(duì)稱(chēng)軸是y軸,但不過(guò)原點(diǎn),則設(shè)y=ax^2+k
定義與定義表達(dá)式
一般地,自變量x和因變量y之間存在如下關(guān)系:
y=ax^2+bx+c
(a,b,c為常數(shù),a≠0,且a決定函數(shù)的開(kāi)口方向,a>0時(shí),開(kāi)口方向向上,a<0時(shí),開(kāi)口方向向下。IaI還可以決定開(kāi)口大小,IaI越大開(kāi)口就越小,IaI越小開(kāi)口就越大。)
則稱(chēng)y為x的二次函數(shù)。
二次函數(shù)表達(dá)式的右邊通常為二次三項(xiàng)式。
x是自變量,y是x的函數(shù)
二次函數(shù)的三種表達(dá)式
、僖话闶:y=ax^2+bx+c(a,b,c為常數(shù),a≠0)
、陧旤c(diǎn)式[拋物線的頂點(diǎn) P(h,k) ]:y=a(x-h)^2+k
、劢稽c(diǎn)式[僅于與x軸有交點(diǎn) A(x1,0) 和 B(x2,0) 的拋物線]:y=a(x-x1)(x-x2)
以上3種形式可進(jìn)行如下轉(zhuǎn)化:
、僖话闶胶晚旤c(diǎn)式的關(guān)系
對(duì)于二次函數(shù)y=ax^2+bx+c,其頂點(diǎn)坐標(biāo)為(-b/2a,(4ac-b^2)/4a),即
h=-b/2a=(x1+x2)/2
k=(4ac-b^2)/4a
②一般式和交點(diǎn)式的關(guān)系
x1,x2=[-b±√(b^2-4ac)]/2a(即一元二次方程求根公式)
中考考察的初中三年所學(xué)的知識(shí)點(diǎn),初三的同學(xué)們一定要認(rèn)真復(fù)習(xí)喲,想了解相關(guān)課程的同學(xué),請(qǐng)撥打?qū)W而思愛(ài)智康免費(fèi)咨詢電話:!
北京初中數(shù)學(xué)二次函數(shù)知識(shí)點(diǎn)就給大家分享到這里,另外學(xué)而思學(xué)科老師還給大家整理了一份《北京初二下期中復(fù)習(xí)資料合集》。
點(diǎn)擊領(lǐng)。骸北京初二下期中復(fù)習(xí)資料合集》復(fù)習(xí)資料
查缺補(bǔ)漏,助你備戰(zhàn)期中診斷!
部分資料截圖如下:
點(diǎn)擊鏈接領(lǐng)取完整版資料:https://jinshuju.net/f/EYm9ow
同時(shí)也向您的孩子推薦學(xué)而思愛(ài)智康中考沖刺精品課程,點(diǎn)擊鏈接:http://m.garagebandforwindow.com/z2019/zkzfx/index.html 或者下方圖片即可預(yù)約
相關(guān)推薦:
① 北京初中數(shù)學(xué)四邊形知識(shí)點(diǎn)
大家都在看
限時(shí)免費(fèi)領(lǐng)取