預(yù)約課程還可獲贈免費的學(xué)習(xí)復(fù)習(xí)診斷
點擊預(yù)約→免費的1對1學(xué)科診斷及課程規(guī)劃
小學(xué)小學(xué)數(shù)學(xué)幾何的五大模型訓(xùn)練12
有棱長為 1、2、3、……、99、100、101、102厘米的正方體102個,把它們的表面都涂上紅漆,晾干后把這102個正方體都分別截成1立方厘米的小正方體,在這些小正方體中,只有2個面有紅漆的共有多少個?
分析與解 根據(jù)題意,首先應(yīng)該想到只有2個面有紅漆的小正方體,都在原來大正方體的棱上。原來棱長是1厘米、2厘米的正方體,將它截成1立方厘米的小正方體后,得不 到只有2個面有紅漆的小正方體。棱長是3厘米的正方體,將它截成1立方厘米的小正方體后,大正方體的每條棱上都有1個小正方體只有2個面有紅漆。每個正方 體有12條棱,因此可得到 12個只有 2個面有紅漆的小正方體,即共有(3-2)×12個。
棱長為4厘米的正方體,將它截成1立方厘米的小正方體后,得到只有 2個面有紅漆的小正方體共(4-2)×12個。
依此類推,可得出,將這102個正方體截成1立方厘米小正方體后,共得到只有2個面有紅漆的小正方體的個數(shù)是:
[(3-2)+(4-2)+(5-2)+……+(102-2)]×12
=[1+2+3+……+100]×12
=60600
答:只有2個面有紅漆的小正方體共有60600個。
2016智康暑期課 | ||
預(yù)初銜接課程 | 點擊咨詢 | 點擊查看專題 |
新概念英語 | 點擊咨詢 | 點擊查看專題 |
初中文言文專項課程 | 點擊咨詢 | 點擊查看專題 |
小學(xué)1對1 | 點擊咨詢 | 點擊查看專題 |
全國數(shù)學(xué)邀請診斷高頻考點查漏補缺課 | 點擊咨詢 | 點擊查看專題 |
課程相關(guān)咨詢電話 :4000-121-121 |
小一至小五年級期末試題答案